
 

 

Plagiarism Checker Based on Machine Learning 

and OpenAI 
Chaitra Boggaram 

Graduate Engineering  

Santa Clata University 

California, USA 

cboggaram@scu.edu 

Oluwabusayo Omotosho 

Graduate Engineering   

Santa Clara University 

California, USA 

oomotosho@scu.edu 

Tenghjiao ZHU 

Graduate Engineering   

Santa Clara University 

California, USA 

tzhu2@scu.edu 

Abstract - Plagiarism has become a significant concern 

in academic writing and publishing, leading to the 

development of various plagiarism detection systems. 

However, most of these systems utilize specific algorithms 

to construct their plagiarism detection mechanisms. In 

this paper, we present a plagiarism checker specifically 

designed for essays generated using ChatGPT, an 

advanced language model developed by OpenAI using the 

PyTorch machine-learning library written in Python. 

Our experiments demonstrate that our plagiarism 

detection system outperforms some existing systems in 

detecting instances of plagiarism. By leveraging the 

capabilities of ChatGPT, we have developed a unique and 

effective tool for maintaining academic integrity and 

preventing plagiarism in writing. 

Keywords - plagiarism checker, machine learning, OpenAI, 

ChatGPT.  

 

I. INTRODUCTION 

The use of plagiarism detection software is becoming 

more and more crucial. A plagiarism checker is a technology 

that compares a supplied work to a database of sources to look 

for any possible instances of plagiarism. 

There are several methodologies to build a plagiarism 
checker including string matching, a bag of words, machine 
learning, or hybrid. Each method has its strengths and 
weaknesses [1-3]. String matching is the most basic but not good 
at detecting paraphrasing. A bag of words can detect both 
copying and paraphrasing but has a high rate of false positives. 
Machine learning can detect plagiarism well but requires lots 
of training data. Hybrids can improve accuracy but can be 
complicated.  

Several studies offer fresh approaches to implementing 
various sorts of anti-plagiarism systems [4 - 11] based on these 
common strategies. Details about each method will be 
explained in the following sections. 

 

II. RELATED WORKS 

A. Existing Methodology 

Many articles have been written about the mechanism of 
plagiarism, which has created a solid foundation for the 
development of anti-plagiarism technologies. 

The most common and harmful types of plagiarism around 
the world, particularly in Ukraine, were outlined by 
Shkodkina and Pakauskas[12]. The four subsets of their 
criterion were affordability, material (format) support, 
functionality, and showcasing. However, nearly all criteria 
approaches and scoring were binary. Also, for both text-based 
and source code comparability findings, Sobhagyawati and 
Jharotia introduced more than 30 and 10 frameworks [12], 
respectively. These investigations aimed to provide a list, 
illustration, and coverage of the most popular devices 
available rather than a correlation between said frameworks. 

Using categorization and computational complexity, 
Lancaster [17] computes similarities. Statistical metrics can be 
language-independent or language-sensitive, according to 
Gruner's work [18]. Moreover, the research on the ability to 
distinguish between four different types of obfuscation, 
including back-translation, basic copy-paste, random 
obfuscation, and summarization is proposed by Vani and 
Gupta [12]. Their studies show that the information on eight 
systems and their main characteristics is accurate across 
systems when no obfuscation is employed. 

Hector Garcia-Molina proposed a method called the 
Stanford Copy Analysis Method (SCAM), which is efficient 
in recognizing different kinds of plagiarism [19]. Also, Chow 
and Rahman [20] devised another method for plagiarism 
detection by using a tree-structured representation and an ML-
SOM (Machine Learning Self-Organizing Map). Moreover, 
M. Zini suggested an approach to locating word or phrase 
clusters in different by using specific words or keywords [21].  

Elhadi and Al-Tobi proposed a duplicate detection method 
that transformed each document into a set of parse trees that 
represent its grammatical structure [22]. Furthermore, Grozea 
and Popescu [23] devised a technique that is intended to be 
language-independent and works with both single-language 
and multilingual materials for determining how closely two 
documents resemble one another. Gelbuk used data from 
dictionaries or thesauri to produce nodes that represent 
concepts or meanings and edges that show how those concepts 
are related to one another [24]. 

These techniques lay the groundwork for many different 
types of plagiarism detection systems. 

 

B. Existing Detection System 

Based on these methodologies mentioned above, there are 
several tools [12] built by universities and institutes available to 
detect plagiarism,  



 

 

Compilatio is plagiarism detection software that compares 
submitted documents against a large database of sources, both 
online and offline. To detect plagiarism, the software 
compares language, sentence structure, and even formatting. 
Also, Copyleaks makes it simple to access a wide range of 
content from various genres, making plagiarism a common 
occurrence. This can be concerning for authors, whether 
professionals or academics and emphasizes the importance of 
understanding how anti-plagiarism software works. 

DupliChecker.com compares input text to a massive 
database of billions of web pages on the internet. It 
meticulously examines your document sentence by sentence 
to ensure complete accuracy, leaving no room for any 
potential matches to be overlooked [12]. Furthermore, Google 
Originality Reports can be used to verify the authenticity of 
Google Docs or Slides by comparing them to online web 
pages and books. Any detected sources are linked within the 
report, and any uncited text is highlighted for review. 

PlagiarismCheck.org employs cutting-edge AI techniques 
designed to detect and track AI-generated content that makes 
it difficult to distinguish it from the human-generated text. 
PlagiarismCheck.org can provide highly accurate results and 
avoid false positives by analyzing a variety of parameters and 
constantly updating our algorithms. Moreover, GPTZero is a 
classification model that predicts whether a document was 
written by an AI model or by a human, providing predictions 
on a sentence, paragraph, and document level. This model is 
written by Edward Tian, a computer science student from 
Princeton University, and is said to be "quick and efficient" to 
decipher whether a human or ChatGPT authored an essay. 
GPTZero was created using Python.  

These systems, despite their widespread use, have several 
shortcomings, such as lengthy wait times and high mistake 
rates. To avoid these negative effects, a novel strategy must be 
put forth. 

 

III. EVOLUTION OF CHATGPT 

The last few years have seen significant development for 
ChatGPT. It has been considered the most sophisticated 
chatbot that has been made [13 - 14] because this chatbot can 
manage various tasks, for instance, generating code snippets, 
composing papers, and stories, and performing complex 
mathematical calculations. The ability to acclimate to any 
request without getting ready has made it a champion among 
other language models. 

ChatGPT was trained on humongous datasets which 
utilized deep neural networks to frame profound learning 
brain networks demonstrated after the human brain. This 
permits ChatGPT to learn patterns and connections in the 
message information to anticipate what text comes next in 
some random sentence. However, it does not operate at the 
sentence level; instead, it creates text that suggests possible 
words, sentences, and even paragraphs.  

Figure 1 shows that retrieving a prompt from the database, 
exhibiting appropriate behaviors, and fine-tuning GPT-3 are 
the three steps in training a supervised model.  

 

Figure 1 - Collect demonstration data and train a 
supervised policy. (OpenAI, 2019) 

Figure 2 shows the reward model training process. Sample 
outputs from other models are in the initial stage. These 
outputs will then be manually sorted. After that train a 
rewarding model by using these sorted data. 

 

Figure 2 - Collecting Comparison data and training a 
reward model (OpenAI, 2019). 

Furthermore, Figure 3 illustrates how to update a reward 
policy. Extracting a prompt from a database is followed by 
getting a new output from the existing reward model. Then, 
the reward model calculates a new reward for output, which is 
used to update the existing reward policy [15]. 



 

 

 

Figure 3 - Optimize a policy against the reward model 
using reinforcement learning (OpenAI, 2019) 

ChatGPT has the potential to significantly enhance 
scholarly research and librarianship in unexpected and 
ground-breaking ways. Therefore, it is important to think 
about how to employ this innovation conscientiously and 
morally and to discover ways to cooperate with it. 

 

IV. MODEL PROPOSED 

Our checker will feature a user-friendly interface made 
with Flask, HTML, CSS, and Python where users can easily 
submit the file to check for plagiarism with precise plagiarism 
detection techniques like text comparison and string matching. 
Moreover, text preprocessing and representation are done by 
using Python for removing the special characters, numbers, 
punctuations, and case conversion to keep only meaningful 
words that will be used as input for the plagiarism checker. 

A. Methodology 

For building the plagiarism checker, we use a website 
where we can upload the file to which plagiarism must be 
checked using Python as the programming language and 
HTML, and CSS for creating the web pages. Here is the 
structure for our checker. 

 

Figure 4 - Structure 

Figure 4 illustrates the integration of plagiarism-checking 
requirements such as text preprocessing and representation. 
The uploaded text undergoes preprocessing by removing 
special characters, numbers, and punctuation, and converting 
the text to lowercase to retain only meaningful words. The 
output is then passed to the plagiarism checker to compute 
the similarities between the uploaded text and the text 
generated by ChatGPT using the cosine similarity algorithm. 
The result is displayed on the screen in a graphical format, 

indicating the similarity score between the texts. 
Alternatively, the user can download the findings in a file, 
which highlights the copied text and provides a similarity 
score. 

 

B. Pseudo Code 

1. Begin 

2. Prompt the user to upload a file to the webpage 

3. Check if the file was successfully uploaded 

4. If the file was not successfully uploaded, terminate the 
program 

5. Else, open the uploaded file in read mode 

6. Read the contents of the file into a buffer 

7. Close the file 

8. Call the OpenAI API to process the buffer 

9. Check if the API call was successful 

10. If the API call was not successful, terminate the 
program 

11. Else, receive the return value from the API call 

12. Create a new file called "output.txt" 

13. Check if the file was successfully created 

14. If the file was not successfully created, terminate the 
program 

15. Else, open the output file in write mode 

16. Write the return value to the output file 

17. Close the output file 

18. Prompt the user to download the output file 

19. End 

 

C. Subsystems 

We have proposed a comprehensive structure for our 
plagiarism checker, which includes four key systems: an I/O 
system, an interactive system, a computation system, and 
downloading system. Each system is designed to perform 
specific tasks and functions to ensure the accurate and 
efficient analysis of documents. Here are the details of each 
system. 

1) I/O System 

This structure has the responsibility of managing 
document input and output. The user login, file upload and 
verification, and sending the validated file to the interactive 
system for additional processing are the three main parts of the 
I/O system. 



 

 

 

Figure 5 - I/O system 

 
Figure 5 demonstrates that the I/O system is composed of 

three key components. Users can upload the file or copy-paste 
the text that they wish to check for plagiarism in our system. 
During the upload process, our checker will verify the file's 
extension to ensure compatibility (.txt or .docx) and file size 
(not more than 2000 characters). Once the file has been 
successfully uploaded and verified, it will be passed to the 
interactive system for further processing. This multi-step 
process ensures that only valid and compatible files are 
analyzed by our checker, leading to more accurate and reliable 
results. 

2) Interactive System. 

This system analyzes the documents and generates 
relevant data for further processing. The interactive system 
comprises five components: document validity checking, 
keyword extraction, communication with OPENAI, storing 
return values, and passing parameters to the computation 
system. 

 
Figure 6 - Interactive system 

 

Figure 6 illustrates that the interactive system comprises 
five main components. After the document has been validated, 
our checker will extract relevant keywords to help with the 

analysis. The communication component oversees enabling 
API contact between our checker and OPENAI so that data 
and information can be exchanged. The return numbers are 
kept in a static folder after the analysis is finished. The 
computation system uses these return values as parameters to 
analyze the data and produce the desired outcomes. This 
multi-step procedure makes sure that all pertinent data is 
correctly analyzed and processed, resulting in more thorough 
and trustworthy results. 

3) Computation System 

This system is responsible for processing the data 
generated by the interactive system and generating the final 
plagiarism analysis results. The computation system processes 
the parameters received from the interactive system and 
generates a report highlighting any instances of plagiarism. 

 

Figure 7 - Computation System 

 
Figure 7 illustrates the components of the computation 

system, which work together to achieve this goal. The 
computation system first determines the similarity between 
the input file and the files generated using OPEN AI. The 
system uses the sklearn machine learning module to calculate 
the similarity between files. Once the similarity for each file 
has been determined, the system identifies the highest score 
among all the similarities. This highest score represents the 
targeted score, which will be used to pass as a parameter to the 
downloading system. 

4) Downloading System 

This system is responsible for providing users with access 
to the final plagiarism analysis report. Once the report is 
generated, the downloading system allows users to download 
the report in a user-friendly format for further analysis. 



 

 

 

Figure 8 - Downloading system 

 
Figure 8 illustrates that the computation system is divided 

into two main components. Firstly, the similarity between the 
input document and the sources identified as potential 
instances of plagiarism is displayed on the page in the form of 
a pie chart. This allows the user to visualize the results of the 
plagiarism analysis quickly and easily. Secondly, there is a 
download button available for users to download the 
plagiarism checking result generated by our checker. This 
allows users to access a detailed report outlining any instances 
of plagiarism detected in their document. The combination of 
these two components provides users with a comprehensive 
understanding of the plagiarism analysis results and allows for 
further analysis and evaluation. 

 

V. EXPERIMENTS 

A. Experiment with other Plagiarism checkers 

This paper uses ChatGPT to generate an essay with 2000 
characters for this experiment. Subsequently, we subjected the 
generated essay to a plagiarism check using 10 different 
websites. The entire process is illustrated in Figure 9, which 
outlines the step-by-step process of generating the essay, 
uploading it to the plagiarism checker, and analyzing the 
results. This experiment allowed us to evaluate the efficacy of 
our plagiarism checker by comparing its results to those 
generated by other existing plagiarism checkers. 

 

 

Figure 9 - Flow Chart 

When comparing different plagiarism-checking tools, 
COT stood out as the most effective at identifying instances 
of plagiarized content in an essay. While Copyleaks was also 
able to identify some instances of paraphrasing, it did not 

catch as much plagiarism as COT. This suggests that COT's 
algorithms and machine learning techniques are more 
advanced and capable of detecting more nuanced forms of 
plagiarism. 

In contrast, the other tools that were used were unable to 
detect any instances of plagiarism at all. This may indicate that 
these tools are not as reliable or accurate as COT and 
Copyleaks and may not be suitable for detecting more subtle 
forms of plagiarism. It's important to note, however, that no 
plagiarism checker is foolproof, and it's always recommended 
to use multiple tools to ensure the most comprehensive 
analysis of a document. 

 

TABLE I 

Comparing Plagiarism Checkers for Essays 

Websites 
Plagiarized 

Percentage 

Detection Time 

(in Seconds) 

https://www.duplichecker.com/ 0% 40.71 

https://smallseotools.com/plagiar

ism-checker/ 
0% 50.22 

https://www.quetext.com/plagiar

ism-checker 
0% 42.51 

https://www.plagiarismchecker.c

o/ 
0% 65.05 

https://plagiarismdetector.net/ 0% 37.66 

https://copyleaks.com/plagiarism

-checker 
68.8% 77.33 

https://www.editpad.org/tool/pla

giarism-checker 
0% 15.55 

https://grammica.com/plagiarism

-checker 
0% 10.68 

https://rewriteguru.com/plagiaris

m-checker/ 
0% 88.78 

COT 83% 100.90 

 

Table 1 illustrates the results of the plagiarism checkers 
and the time taken by them to compute the results. Out of 10 
websites, only 2 were able to detect plagiarism. 

 

Figure 10 - COT Plagiarism results 

Figure 10 illustrates how COT detected most of the 
plagiarism by following a multi-step process. Firstly, COT 
extracts the title from the input file, then queries ChatGPT for 
10 different results. These results are analyzed and compared 



 

 

to the input file to identify any similarities or matches between 
the content. By utilizing ChatGPT, COT can tap into a vast 
amount of language data and knowledge to provide more 
accurate and reliable plagiarism detection. 

 

 

Figure 11 – Highlighted content 

Figure 11 further illustrates how COT highlights the 
matching content in the input file. This feature helps users 
quickly identify any instances of plagiarism and review the 
content in question. By providing visual aids, COT makes it 
easier for users to understand and address any issues with their 
work. 

Overall, COT's multi-step process and integration with 
ChatGPT make it a powerful tool for detecting plagiarism. 
The ability to extract titles and provide visual aids for 
matching content helps users quickly identify and address any 
potential issues, promoting academic and professional 
integrity. 

 

B. Experiment on GPTZero 

We conducted multiple experiments, but the results of 
these two experiments were particularly interesting. 

1) GPTZero with ChatGPT generated content. 

In this experiment, GPTZero was able to detect the entire 
content written by ChatGPT as illustrated in figure 12, but it 
failed to identify content that was modified or paraphrased to 
some extent. Specifically, when we made modifications to the 
content or used paraphrasing techniques, GPTZero was not 
able to identify it as having originated from an AI model as 
illustrated in figure 13.  

 

Figure 12 – Content detected written by ChatGPT 

 

 

Figure 13 - Content not detected after modifying 

 



 

 

2) GPTZero with Modern Operating Systems book 

In this experiment, we found that GPTZero gives very 
mixed results when we tested the GPTZero by pasting the 
content from the book "Modern Operating Systems" fourth 
edition by Andrew S. Tanenbaum and Herbert Bos, which was 
written in 2014. GPTZero states that one-third of this given 
content is AI written, and this is only the first page taken from 
the textbook. The textbook which was written in 2014 is not 
AI written, and this makes it obvious that this is a false 
positive. Figure 14 illustrates the results of GPTZero 
generated for the first page of the Introduction chapter in the 
textbook. 

 

Figure 14 – Results from GPTZero 

 

VI. CONCLUSION 

The COT plagiarism checker will check for text 
similarities, string matches, and semantic analysis between 
them by importing the OPENAI module to Python, we will 
generate the results from ChatGPT which are similar to the 
uploaded file for comparison. Then we check for a similarity 
score using the cosine similarity between the input file and the 
ChatGPT result file. The result generated by the plagiarism 
checker will highlight the similarities between the uploaded 
file and the result file that we get from ChatGPT is provided 
in a graphical representation for better viewing, while the 
generated report is also available for the user to download 
afterward.  

The experiment aims to evaluate the efficacy of plagiarism 
checkers and the accuracy of GPTZero which is a 
classification model that predicts whether a document was 
written by an AI model or by a human. In the experiment, we 
checked plagiarism on an essay generated by ChatGPT using 

10 different plagiarism checkers and compared their results. 
The experiment found that COT and Copyleaks were the most 
effective at detecting plagiarism, while the other tools were 
unable to detect any instances of plagiarism. GPTZero has 
tested with ChatGPT-generated content and the book "Modern 
Operating Systems" fourth edition by Andrew S. Tanenbaum 
and Herbert Bos, and the experiment found that GPTZero was 
able to detect the entire content written by ChatGPT, but failed 
to identify content that was modified or paraphrased to some 
extent. In addition, GPTZero gave mixed results when tested 
with the textbook "Modern Operating Systems" fourth edition, 
giving a false positive.  

However, COT gave some false positives where human-
written content was flagged as content written by an AI model 
as human-written content has similar phrases to AI-generated 
content. To reduce false positives when detecting plagiarism 
between human-written content and AI-generated content, the 
threshold can be adjusted for the similarity score, where 
documents with a high level of similarity will be flagged as 
potentially plagiarized. We can also try to implement datasets 
in the COT plagiarism checker, by collecting a diverse set of 
documents, preprocessing them to remove unnecessary 
formatting, and split them into training and testing sets, 
applying similarity measures to those documents, such as n-
gram analysis, syntactic similarity, and semantic similarity, to 
identify similarities between them. Finally, to evaluate the 
performance of COT using the testing set to identify areas for 
improvement. 

 

VII. REFERENCES 

[1] Naik, Ramesh R., Maheshkumar B. Landge, and C. Namrata 

Mahender. "A review on plagiarism detection tools." International 

Journal of Computer Applications 125.11 (2015). 

[2] G. EasonBruno, Andrea, et al. "Distributed anti-plagiarism checker for 
biomedical images based on sensor noise." New Trends in Image 

Analysis and Processing–ICIAP 2017: ICIAP International 

Workshops, WBICV, SSPandBE, 3AS, RGBD, NIVAR, IWBAAS, 

and MADiMa 2017, Catania, Italy, September 11-15, 2017, Revised 

Selected Papers 19. Springer International Publishing, 2017. 

[3] Meo, Sultan A., and Muhammad Talha. "Turnitin: Is it a text matching 

or plagiarism detection tool?." Saudi journal of anaesthesia 13. Suppl 1 

(2019): S48- 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398291/. 

[4] Razı, Salim. "Development of a rubric to assess academic writing 
incorporating plagiarism detectors." Sage Open 5.2 (2015): 

2158244015590162. 

[5] Halak, Basel, and Mohammed El-Hajjar. "Plagiarism detection and 

prevention techniques in engineering education." 2016 11th European 

Workshop on Microelectronics Education (EWME). IEEE, 2016. 

[6] Eaton, Sarah Elaine, et al. "An institutional self-study of text-matching 

software in a Canadian graduate-level engineering program." Journal 

of Academic Ethics 18.3 (2020): 263-282. 

[7] Nova, Muhamad, and Westi Utami. "EFL STUDENTS’PERCEPTION 

OF TURNITIN FOR DETECTING PLAGIARISM ON ACADEMIC 

WRITING." International Journal of Education 10.2 (2018): 141-148. 

[8] Kunschak, Claudia. "Multiple uses of anti-plagiarism software." The 

Asian journal of applied linguistics 5.1 (2018): 60-69.  

[9] Al Jarrah, Abeer, Izzat Alsmadi, and Zakariya Za’atreh. "Plagiarism 

Detection based on studying the correlation between Author, Title, and 
Content." International Conference on Information Communication 

System (CICS). 2011. 

[10] Niklander, Tiina. "How to avoid plagiarism?." Proceedings of AMICT 

2010-2011 Advances in Methods of Information and Communication 

Technology: 87. 

[11] Potthast, Martin, et al. "An evaluation framework for plagiarism 

detection." Coling 2010: Posters. 2010. 



 

 

[12] Ali, Asim M. El Tahir, Hussam M. Dahwa Abdulla, and Vaclav Snasel. 
"Overview and comparison of plagiarism detection tools." Dateso. 
2011.  

[13] Okonkwo, C.W., & Ade-Ibijola, A. Chatbots applications in education: 
A systematic review. Computers and Education: Artificial Intelligence, 
2, 100033. (2021) 

[14] OpenAI. (2019). Learning to Follow Natural Language Directions in 
Unknown Environments. Retrieved from 
https://openai.com/research/instruction-following. 

[15] Zhou, Ce, et al. "A comprehensive survey on pretrained foundation 
models: A history from bert to ChatGPT." arXiv preprint 
arXiv:2302.09419 (2023). 

[16] GPTZero. (n.d.). GPTZero, from https://app.gptzero.me/app/welcome 

[17] Lukashenko, Romans, Vita Graudina, and Janis Grundspenkis. 
"Computer-based plagiarism detection methods and tools: an 
overview." Proceedings of the 2007 international conference on 
Computer systems and technologies. 2007. 

[18] Gruner, S., S. Naven. Tool support for plagiarism detection in text 
documents. Proceedings of the 2005 ACM Symposium on Applied 
Computing. pp. 776 – 781, 2005. 

[19] Shivakumar, Narayanan, and Hector Garcia-Molina. "SCAM: A copy 
detection mechanism for digital documents." DL. 1995. 

[20] Chow, Tommy WS, and M. K. M. Rahman. "Multilayer SOM with 
tree-structured data for efficient document retrieval and plagiarism 
detection." IEEE Transactions on Neural Networks 20.9 (2009): 1385-
1402. 

[21] Zini, Manuel, et al. "Plagiarism detection through multilevel text 
comparison." 2006 Second International Conference on Automated 
Production of Cross Media Content for Multi-Channel Distribution 
(AXMEDIS'06). IEEE, 2006. 

[22] Elhadi, Mohamed, and Amjad Al-Tobi. "Use of text syntactical 
structures in detection of document duplicates." 2008 Third 
International Conference on Digital Information Management. IEEE, 
2008. 

[23] Grozea, Cristian, Christian Gehl, and Marius Popescu. "ENCOPLOT: 
Pairwise sequence matching in linear time applied to plagiarism 
detection." 3rd PAN Workshop. Uncovering Plagiarism, Authorship 
and Social Software Misuse. 2009. 

[24] Torres, Sulema, and Alexander Gelbukh. "Comparing similarity 
measures for original WSD lesk algorithm." Research in Computing 
Science 43 (2009): 155-166. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	I. Introduction
	II. Related Works
	A. Existing Methodology
	B. Existing Detection System

	III. Evolution of ChatGPT
	IV. Model proposed
	A. Methodology
	B. Pseudo Code
	C. Subsystems
	1) I/O System
	2) Interactive System.
	3) Computation System
	4) Downloading System


	V. Experiments
	A. Experiment with other Plagiarism checkers
	B. Experiment on GPTZero
	1) GPTZero with ChatGPT generated content.
	2) GPTZero with Modern Operating Systems book


	VI. Conclusion
	VII. References

